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Abstract—The problem of mixed convection flow over a vertical cylinder in fluid-saturated porous media

has been analyzed by taking the non-Darcian effects into consideration. These effects include the no-slip

boundary condition, flow inertial force, variable porosity, and transverse thermal dispersion. The numerical

solution of the governing equations has been obtained to demonstrate the important influence of these

non-Darcian flow phenomena on fluid flow and heat transfer. The results show that thermal dispersion
tends to enhance the heat transfer rate, while boundary and inertia effects decrease it.

INTRODUCTION

CoNVECTIVE heat transfer and fluid flow in porous
media has recently received considerable attention in
connection with geophysical and engineering appli-
cations. Such applications include geothermal
systems, chemical catalytic reactors, packed-sphere
beds, grain storage and thermal insulation engin-
eering. The majority of the existing studies pertinent
to flow through porous media are for the case of a
Darcy flow. Darcy’s law, however, is found to be
inadequate in flow situations when there is a solid
boundary and the Reynolds number based on the pore
size is greater than unity. It is, therefore, necessary to
include the boundary and inertia effects in the momen-
tum equations. These effects have been investigated
for convective flow and heat transfer about a flat plate
embedded in porous media [1-3].

The problem of mixed convection flow over a thin
vertical cylinder embedded in a saturated porous
medium was studied by Kumari and Nath [4] using a
non-Darcy model to account for the inertia effects.
Other non-Darcian flow effects which may be impor-
tant on the same problem have not however, been
considered. The aim of the present work is to examine
the various non-Darcian effects on the mixed con-
vection about an isothermal vertical cylinder
immersed in a fluid-saturated porous medium.
Boundary effects can be modeled by adding a viscous-
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stress term to the momentum equation. A velocity
squared term is incorporated into the momentum
equation to account for the inertia effects. When the
effect of porosity is considered, the flow channeling
will occur adjacent to the surface [6, 7]. This effect is
demonstrated to be very important on heat transfer.
In studying the non-uniform porosity effects, a simple
exponential function will be used to approximate the
porosity variation in the vicinity of the solid boundary.
As pointed out by Cheng [8] and Plumb [9], transverse
thermal dispersion effects may become significant
when inertia effects are prevalent. This thermal dis-
persion effect is also examined in the present study.
As will be shown in the following sections, the above
mentioned non-Darcian effects significantly alter the
flow and heat transfer characteristics from those pre-
dicted by the Darcy flow model.

ANALYSIS

The steady mixed convection flow over an iso-
thermal vertical cylinder of radius r, embedded in a
saturated porous medium is considered. It is assumed
that the convective fluid and the porous matrix are in
local thermodynamic equilibrium, and that the Bous-
sinesq approximation is valid. The boundary-layer
equations in a cylindrical coordinate system are given
as [2]
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NOMENCLATURE
{
A empirical constant in equation (6) o radius of cylinder
B constant defined in equation (16) T temperature
C inertia coefficient u x-component velocity
c specific heat of the fluid u, convective velocity, — (K, w)(dp/dx)
Da Darcy number, K, /x* v r-component velocity
D, empirical constant defined in equation X axial coordinate.
a7
d article diamet
. particie diameter . Greek symbols
f dimensionless stream function . o .
Gr Grashof number, g8K , x(T. — T, )/’ e effective thermal diffusivity
o P IP R XU Lo % thermal diffusivity of fluid
g gravitational constant : .
. B thermal expansion coefficient
h heat transfer coefficient - .
.- r parameter in equation (14)
K permeability . .
) . n pseudo-similarity variable
ky stagnant thermal conductivity . .
. .. 0 dimensionless temperature
k. effective thermal conductivity L - .
.. . A thermal conductivity ratio of the solid
k¢ thermal conductivity of fluid .
.. . phase to fluid phase
k, thermal conductivity of particles . . .
. . - u viscosity of the fluid
k, thermal dispersion conductivity . L . .
- . . v kinematic viscosity of fluid
N empirical constant in equation (6) . . . .
& dimensionless streamwise coordinate
Nu Nusselt number, Ax/k, . .
I density of the fluid
P pressure o oo
Pey  Peclet number based on particle o/
. ¢ porosity
diameter, u, da W stream function
Pe Peclet number, u, x/o, ’
Pr Prandtl number of the fluid
q local heat flux Subscripts
Re Reynolds number, u., x/v o0 quantities away from the wall
r radial coordinate w quantities at wall.

oT T 128 orT 3
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where u and v are the components of velocity in the
x- and r-directions: T, p. and ¢ are the temperature,
pressure, and gravitational constant; p, u, and § are
the density, viscosity, and the thermal expansion
coefficient of the fluid; K, C, and ¢ are the
permeability, inertia coefficient, and porosity of the
porous medium ; and a, = k./pc is the effective ther-
mal diffusivity of the porous medium with k. denoting
the effective thermal conductivity of the saturated
porous medium and pc the product of the density and
specific heat of the fluid. The appropriate boundary
conditions for this problem are

T=T, at
TT=T, as

u=0v=_0, r=r, 4)

u=u,, r— oc. (&)

In order to study the variable porosity effects, an
exponential decrease is usually assumed to approxi-
mate the near-wall porosity variation such as in
packed-sphere beds [10]

¢ =, +{l+Aexp [—N(—r,)/d]} (6)

where ¢, = 0.4 is the free-stream porosity, d the par-
ticle diameter, and 4 and N are the empirical constants

which depend on the packing of particles near the
solid wall. The value for 4 is determined so that the
porosity at the wall is 0.9. The value of N = 6 is used
to represent the decay of porosity from the solid wall
[10]. Both the permeability K and the inertia
coefficient C of the porous matrix can be expressed in
terms of the particle diameter and porosity from the
correlations developed by Ergun [11}
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The continuity equation, equation (1), is satisfied
identically by introducing the stream function ¥ as
oy oy

= and ro= e )

Equations (2) and (3) along with the boundary
conditions (4) and (5) can be non-dimensionalized by
defining the following transformations
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The governing equations (2) and (3) in terms of these
new variables are
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where Da= K, /x?, Pe=u,xfa;, T =K Cou./v,
g = o /a; and Gr/Re = gfK (T, — Ty )/u,v. Bound-
ary conditions (4) and (5) reduce to

of

f =0, f+é&—0 =1 at n=0 (13)
, —1+\/(4F+1) _
f= —r =0 asn—o
C=C,, K=K, asn— o (14)

where the primes indicate differentiation with respect
to 5. The free-stream boundary condition on the vel-
ocity is obtained from the momentum equation, equa-
tion (14), by neglecting the viscous and buoyancy
terms.

It is well known that the effective thermal con-
ductivity k., of a saturated porous medium is com-
posed of a sum of the stagnant thermal conductivity
k4 (due to molecular diffusion) and the thermal dis-
persion conductivity %k, (due to mechanical dis-
sipation), i.e.-

ke =k, +k,. (15)

The stagnant thermal conductivity for packed-sphere
beds can be given by the following semi-analytical
expression [12]

ky
Pl USRI
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where B = 1.25[(1—¢)/¢]'%° and A = k/k, is the
ratio of the thermal conductivity of fluid to that of
particles. Equation (10) reveals that the stagnant ther-
mal conductivity is a function of position for variable
porosity media. As proposed by Hsu and Cheng [13],
the thermal dispersion conductivity can be expressed
in terms of the new variables as

2/(1—¢)
B

k 1—4;

k—: g Peyf’ W)
where D, is an empirical constant space and
Pey = u day.

The most important result to be given is the heat
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transfer along the vertical cylinder. Consider first the
local surface heat flux which can be written as

oT
- —k <ar>' ’0.

The local heat transfer rate at the wall can be pre-
sented conveniently in terms of the local Nusselt num-
ber Nu, which is defined as Nu = hx/k,, where A is the
local heat transfer coefficient. Combining equation
(18) with' the definition of A, ie. ¢ = H(T,—T,),
results in

(18)

Nu/Pe'* = —§'(£,0) 19

which is recognized as the local heat transfer
parameter.

RESULTS AND DISCUSSION

Numerical solutions to equations (14) and (15) for
various flow models were obtained using the Keller
Box method which is described in great detail in ref.
{14]. In carrying out the numerical simulations,
the following values of physical quantities were
employed: Pr=3.54, u.=0.0l ms~', and k, = 1.05
W m ' K~! for glass beads of diameters 3 mm and
5 mm. Since various non-Darcian effects are taken
into consideration, the following symbols are used:
nBnlU, which indicates no Boundary, no Inertia, and
Uniform porosity effects ; BIV, which refers to Bound-
ary, Inertia, and Variable porosity effects, etc. It may

 be remarked that nBnlU is the Darcy flow case and

nBIU is the case reported in ref. [4]. Also nBnIU with
& = 0 reduces to the case of mixed convection about
a vertical flat plate studied by Cheng [5]. In order to
confirm the accuracy of the present numerical method,
the results of these special cases have been compared
and found in good agreement with those of refs. [4,
5]. The comparison is not presented here for brevity.

Figures 1-8 present the results with dispersion
effects neglected. Numerical results for the local heat
transfer parameter Nu/\/(Pe) are illustrated in Figs.

20 — BIU
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0.8 \
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FiG. 1. Local heat transfer parameters for forced convection
(Gr/Re = 0).
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Fi6. 2. Local heat transfer parameters for forced convection
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Fi1G. 3. Local heat transfer parameters for torced convection
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FiG. 4. Local heat transfer parameters tor forced convection
(Gr/Re = 1).

1-4. Resuits for forced convection {Gr/Re = 0) are
also shown to indicate the fact that buoyancy force
augments the heat transfer rates. The no-slip bound-
ary effect, which is governed by the parameter Da Pe,
reduces the heat transfer as compared to the case
of a Darcy flow. The decrease in the heat transfer

8 —
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Gr/Re =1 4 BnlV
5 nBnily
Iz
I }
€ 8

Fi16. 5. The velocity distribution at x = 20 mm.
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FiG. 6. The velocity distributions at x = 350 mm.
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FiG. 7. The temperature distributions at x = 20 mm.
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Fi1G. 8. The temperature distributions at x = 350 mm.

parameter is more significant near the leading edge,
as shown in the figures, which imply that the boundary
effect is more important near the leading edge. Like
the boundary effect, the effect of flow inertia is to
decrease the heat transfer rate. This is similar to what
has been reported in ref. [2] for forced convection over
a flat plate. The importance of the inertia effect is
characterized by the parameter I" defined in equation
(11). This parameter is seen to be proportional to the
particle diameter d, hence the heat transfer is more
reduced for porous media with large particles. The
numerical solutions also indicate the enhancement in
heat transfer due to flow channeling. It should be
noticed that the heat transfer will be overestimated
without the inclusion of inertia effects in non-uniform
porous media. When the boundary, inertia, and vari-
able porosity effects are considered simultaneously,
the heat transfer can be either enhanced or reduced,
as compared to the Darcy case, depending on the
balance between these mechanisms.

Typical velocity distributions with various non-
Darcian effects are plotted in Fig. 5 for a position
near the leading edge and in Fig. 6 for a downstream
position. It can be concluded that the boundary and
inertia effects tend to decrease the velocity, while the
variable porosity effect causes an overshoot of velocity
near the wall. This channeling profile is created by the
non-uniform porosity distribution with a high
porosilty region near the wall. At downstream
locations the velocity overshooting is seen to be con-
fined in a narrower region than that near the leading
edge. Also from these figures it is noted that the Darcy
flow model (nBnlIU) allows a slip velocity on the solid
boundary. The free-stream velocity for the case with
inertia effect included is given by equation (14). Fig-
ures 7 and 8 present the dimensionless temperature
profiles corresponding to the velocity profiles pre-
sented in Figs. 5 and 6. As seen in the figures, both
boundary and inertia effects lead to a thicker thermal
boundary layer but a smaller temperature gradient at
the wall.
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F1G. 9. Influence of thermal dispersion on the local heat
transfer parameters.
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FiG. 10. Influence of thermal dispersion on the local heat
transfer parameters.

The effect of thermal dispersion on the heat transfer
parameter can be observed in Figs. 9 and 10. This
effect is expected to become important in the case
where inertia effects are prevalent. The empirical con-
stant D, defined in equation (17) should be determined
from experiment. In the present study a fixed value of
0.02 [13] is used to examine qualitatively the dis-
persion effect. The results show that heat transfer
is increased greatly by taking into consideration the
thermal dispersion effect. This large enhancement in
heat transfer caused by the dispersive transport can
be attributed to the better mixing of convective fluid
within the pores. As verified from the figures, thermal
dispersion has a more pronounced effect at a higher
value of Pe,.

CONCLUSION

The analysis is performed to investigate the sig-
nificance of non-Darcian flow effects on mixed con-
vection from a heated vertical cylinder embedded in
fluid-saturated porous media. It is seen that the vel-
ocity and temperature profiles, predicted by including
the non-Darcian effects, differ significantly from those
based on Darcy’s law. When both the boundary
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and inertial effects are incorporated in the analysis,
the velocitly in the boundary layer is reduced, resulting
in a lower heat transfer rate. The flow channeling
effect, which is due to the variation in porosity near
the wall, enhances the momentum transport in the
boundary layer and results in an increase in heat trans-
fer. Whether hecat transfer is enhanced or reduced
depends on the relative magnitude of these effects.
Also, the results demonstrate that dispersion dra-
matically increases the thermal communication
between the porous matrix and the solid boundary.
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EFFETS NON DARCIEN SUR LA CONVECTION MIXTE AUTOUR D'UN CYLINDRE
VERTICAL NOYE DANS UN MILIEU POREUX SATURE

Résume-—On considére le probléme de la convection mixte autour d’un cylindre vertical dans un milicu

poreux en tenant compte des effets non darciens. Ces effets incluent la condition de non glissement & la

fronticre, la force d'inertie, la porosité variable et la dispersion thermique transverse. La solution numérique

des équations est obtenue pour montrer 'influence importante des phénoméncs non darciens sur

I'écoulement du fluide et le transfert thermique. Les résultats montrent que la dispersion thermique tend
a augmenter le flux thermique transfere. tandis que les effets de {rontiére et d’inertie le diminuent.

NICHT-DARCY’SCHE EINFLUSSE AUF DIE MISCHKONVEKTION UM EINEN
VERTIKALEN ZYLINDER IN EINEM GESATTIGTEN POROSEN MEDIUM

Zusammenfassung—Das Problem der Mischkonvektion entlang eines senkrechten Zylinders in einem

fluidgesittigten pordsen Medium wird unter Beriicksichtigung nicht-Darcy’scher Effekte analysiert. Diese

Einflisse enthalten die Haftbedingung an der Wand, die Trigheit der Strémung, variable Porositit und

quergerichtete thermische Dispersion. Die zugrundeliegenden Gleichungen werden numerisch geldst. um

den wichtigen EinfluB dieser nicht-Darcy’schen Phidnomene auf Strdmung und Wirmeiibergang zu demon-

strieren. Die Ergebnisse zeigen, daB} thermische Dispersion gewdhnlich den Wirmetbergang intensiviert,
wihrend dieser durch Rand- und Trigheitseffekte verringert wird.

BJINAHUE HEJAPCOBBIX 30®EKTOB HA CMEHIAHHYIO KOHBEKLHNIO ¥V
BEPTUKAJIBHOT'O HUJIUHIPA, TIOMENIEHHOI'O B HACBIHIEHHYIO MMOPUCTVYIO
CPEY

Amxoraia—C y4eTOM HedapcoBbIX 3¢dekToB aHaIU3UPYETC 3a/a4a CMEIlaHHOKOHBEKTUBHOIO obOTe-
KaHHs BEPTHKAJILHOTO UMJIMHAPA, HOMELIAEMOrO B HACHIILIEHHbIE XXUAKOCTHIO NOPHUCTbIE Cpeabl. Y Ka3aH-
Hble 3PDEKTH BKIIOYAIOT FPAaHHYHOE YCIOBHE OTCYTCTBHS CKOJIbXKEHHS, HMHEPLMOHHYIO CHJIY TEYeHHs,
H3MEHAIOLIYIOCH IIOPUCTOCTh M NoMepeyHoe paccesHue Temna. [lolydueHo 4MCIIEHHOE pelleHHE OIpe-
JENAOUMX ypaBHEHMH, KOTOPOE JEMOHCTPHPYET CYLLECTBEHHOE BIHMSIHHE HENApCOBBIX SBICHMA Ha
TEYEHHUE XHIAKOCTH H TeIUlonepeHoc. Pe3ynbTaThl MOKa3bIBAIOT, YTO pACCESHME TEIIa NPHUBOAHT K
HHTEHCHM(UKALMH TEIUIONEPEHOCa, B TO BPeMs Kak IPDAHMYHBIE M UHEPLUOHHBIE 3((PEKThl €ro yMeHb-

LIAOT.



