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Abstract-The problem of mixed convection flow over a vertical cylinder in fluid-saturated porous media 
has been analyzed by taking the non-Darcian effects into consideration. These effects include the no-slip 
boundary condition, flow inertia1 force, variable porosity, and transverse thermal dispersion. The numerical 
solution of the governing equations has been obtained to demonstrate the important influence of these 
non-Darcian flow phenomena on fluid flow and heat transfer. The results show that thermal dispersion 

tends to enhance the heat transfer rate, while boundary and inertia effects decrease it. 

INTRODUCTION 

CONVECTIVE heat transfer and fluid flow in porous 
media has recently received considerable attention in 
connection with geophysical and engineering appli- 
cations. Such applications include geothermal 

systems, chemical catalytic reactors, packed-sphere 
beds, grain storage and thermal insulation engin- 
eering. The majority of the existing studies pertinent 
to flow through porous media are for the case of a 
Darcy flow. Darcy’s law, however, is found to be 
inadequate in flow situations when there is a solid 
boundary and the Reynolds number based on the pore 
size is greater than unity. It is, therefore, necessary to 
include the boundary and inertia effects in the momen- 
tum equations. These effects have been investigated 
for convective flow and heat transfer about a flat plate 
embedded in porous media [l-3]. 

The problem of mixed convection flow over a thin 
vertical cylinder embedded in a saturated porous 
medium was studied by Kumari and Nath [4] using a 
non-Darcy model to account for the inertia effects. 
Other non-Darcian flow effects which may be impor- 
tant on the same problem have not however, been 
considered. The aim of the present work is to examine 
the various non-Darcian effects on the mixed con- 
vection about an isothermal vertical cylinder 
immersed in a fluid-saturated porous medium. 
Boundary effects can be modeled by adding a viscous- 

t Present address : National Aeronautics and Space 
Administration, Marsha11 Space Flight Center, Huntsville, 
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stress term to the momenrum equation. A velocity 

squared term is incorporated into the momentum 
equation to account for the inertia effects. When the 

effect of porosity is considered, the tlow channeling 
will occur adjacent to the surface [6, 71. This effect is 
demonstrated to be very important on heat transfer. 

In studying the non-uniform porosity effects, a simple 
exponential function will be used to approximate the 
porosity variation in the vicinity of the solid boundary. 
As pointed out by Cheng [8] and Plumb [9], transverse 
thermal dispersion effects may become significant 
when inertia effects are prevalent. This thermal dis- 
persion effect is also examined in the present study. 
As will be shown in the following sections, the above 
mentioned non-Darcian effects significantly alter the 

flow and heat transfer characteristics from those pre- 
dicted by the Darcy flow model. 

ANALYSIS 

The steady mixed convection flow over an iso- 
thermal vertical cylinder of radius r,, embedded in a 
saturated porous medium is considered. It is assumed 
that the convective fluid and the porous matrix are in 
local thermodynamic equilibrium, and that the Bous- 
sinesq approximation is valid. The boundary-layer 
equations in a cylindrical coordinate system are given 

as 121 
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NOMENCLATURE 

empirical constant in equation (6) 

constant defined in equation ( 16) 
inertia coefficient 
specific heat of the fluid 
Darcy number, K, /.Y’ 

empirical constant defined in equation 

(17) 
particle diameter 
dimensionless stream function 
Grashof number, gbK,,.r(T, - T,~)/v’ 

gravitational constant 
heat transfer coefficient 

permeability 
stagnant thermal conductivity 
effective thermal conductivity 
thermal conductivity of fluid 
thermal conductivity of particles 
thermal dispersion conductivity 
empirical constant in equation (6) 
Nusselt number, hx/k, 

nressure 
Peclet number based on particle 
diameter, u, d/cc, 
Peclet number, u,,x/x, 
Prdndtl number of the fluid 
local heat flux 
Reynolds number, u, X/V 
radial coordinate 

rcl radius of cylinder 
T tcmperaturc 

U x-component velocity 

% convective velocity. -(K, p)(dp/dx) 
1 r-component velocity 

.Y axial coordinate. 

Greek symbols 

% effective thermal diffusivity 

%(I thermal diffusivity of fluid 

c1 thermal expansion coefficient 
I- parameter in equation (14) 

; 
pseudo-similarity variable 

dimensionless temperature 
E. thermal conductivity ratio of the solid 

phase to fluid phase 

n viscosity of the fluid 

: 

kinematic viscosity of fluid 
dimensionless streamwise coordinate 

P density of the fluid 
(T sl,ilf 

; 

porosity 
stream function. 

Subscripts 
rx) quantities away from the wall 
W quantities at wall. 

where u and L; are the components of velocity in the 
X- and r-directions ; T, p. and ,q are the temperature, 

pressure, and gravitational constant ; p, p, and /I are 
the density, viscosity, and the thermal expansion 
coefficient of the fluid; K, C, and 4 are the 
permeability, inertia coefficient, and porosity of the 
porous medium; and a, = k,/pc is the effective ther- 
mal diffusivity of the porous medium with k, denoting 
the effective thermal conductivity of the saturated 
porous medium and pc the product of the density and 
specific heat of the fluid. The appropriate boundary 
conditions for this problem are 

u=c=O, T= T, at r = r,) (4) 

u=u,,, T=T, as r+E. (5) 

In order to study the variable porosity effects, an 
exponential decrease is usually assumed to approxi- 
mate the near-wall porosity variation such as in 
packed-sphere beds [IO] 

$=4X +{l+Aexp[-N(r-r,)/d]} (6) 

where 4, = 0.4 is the free-stream porosity, d the par- 
ticle diameter, and A and N are the empirical constants 

which depend on the packing of particles near the 
solid wall. The value for A is determined so that the 
porosity at the wall is 0.9. The value of N = 6 is used 
to represent the decay of porosity from the solid wall 

[IO]. Both the permeability K and the inertia 
coefficient C of the porous matrix can be expressed in 

terms of the particle diameter and porosity from the 
correlations developed by Ergun [I l] 

The continuity equation, equation (I), is satisfied 

identically by introducing the stream function $ as 

Equations (2) and (3) along with the boundary 

conditions (4) and (5) can be non-dimensionalized by 
defining the following transformations 
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The governing equations (2) and (3) in terms of these transfer along the vertical cylinder. Consider first the 
new variables are local surface heat flux which can be written as 

(18) 

The local heat transfer rate at the wall can be pre- 
sented conveniently in terms of the local Nusselt num- 
ber Nu, which is defined as Nu = hxlk,, where h is the 
local heat transfer coefficient. Combining equation 
(18) with the definition of h, i.e. q = h(T,- T,), 
results in 

Nu/Pe’12 = -&(l,O) (19) 

where Da = Km/x’, Pe = u,x/clf, I7 = K,C,u,/v, 
which is recognized as the local heat transfer 

o = cr.-/n, and Gr/Re = g/3K, (T, - Tm)/u,v. Bound- 
parameter. 

ary conditions (4) and (5) reduce to 
RESULTS AND DISCUSSION 

.f’ = 0, .f+g$= 0, Q = 1 at rl = 0 (13) Numerical solutions to equations (14) and (15) for 
various flow models were obtained using the Keller 

f’= 
- 1 +J(4r+ 1) 

2r ~~ . Q=O asq+oo 
Box method which is described in great detail in ref. 
[14]. In carrying out the numerical simulations, 

C=C,, K=K, 
the following values of physical quantities were 

asn+co (14) employed: Pr = 3.54, u, = 0.01 m s- ‘, and k, = 1.05 

where the primes indicate differentiation with respect W rn. ’ Km’ for glass beads of diameters 3 mm and 

to q. The free-stream boundary condition on the vel- 5 mm. Since various non-Darcian effects are taken 

ocity is obtained from the momentum equation, equa- into consideration, the following symbols are used: 

tion (14), by neglecting the viscous and buoyancy nBnIU, which indicates no Boundary, no Inertia, and 

terms. Uniform porosity effects; BIV, which refers to Bound- 

It is well known that the effective thermal con- ary, Inertia. and Variable porosity effects, etc. It may 

ductivity k, of a saturated porous medium is com- be remarked that nBnIU is the Darcy flow case and 

posed of a sum of the stagnant thermal conductivity nBIU is the case reported in ref. [4]. Also nBnIU with 

kd (due to molecular diffusion) and the thermal dis- 5 = 0 reduces to the case of mixed convection about 

persion conductivity k, (due to mechanical dis- a vertical flat plate studied by Cheng [5]. In order to 

sipation), i.e.’ confirm the accuracy of the present numerical method, 

k, = k, fk,. (15) 
the results of these special cases have been compared 
and found in good agreement with those of refs. [4, 

The stagnant thermal conductivity for packed-sphere 51. The comparison is not presented here for brevity. 

beds can be given by the following semi-analytical Figures l-8 present the results with dispersion 

expression [ 121 effects neglected. Numerical results for the local heat 

k, q/u-4) 
transfer parameter Nu/J(Pe) are illustrated in Figs. 

g =[1-:(1-&)1+~1_,, 
I 

X[Bln(jlg)-B: -g (16) 
1 

2.0 
d=3mm 1 BIU 

2 BnlU 
1.7 A= 1.059 

where B = 1.25[(1 -4)/4]‘“!9 and 1 = kJk, is the 
3 BIV 
4 BnlV 

ratio of the thermal conductivity of fluid to that of 
particles. Equation (10) reveals that the stagnant ther- 
mal conductivity is a function of position for variable 
porosity media. As proposed by Hsu and Cheng [ 131, 
the thermal dispersion conductivity can be expressed 
in terms of the new variables as 

1.4 c 5 nBnllJ 

(17) 0.2 I I I I I I 
0 100 200 300 400 500 

where D, is an empirical constant space and x [mm1 

Pe, = u,d/u,. FIG. 1. Local heat transfer parameters for forced convection 
The most important result to be given is the heat (Gr/Re = 0). 
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FIG. 2. Local heat transfer parameters for forced convection 
(Gr/Re = I). 
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FIG. 5. The velocity distribution at x = 20 mm. 
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FIG. 3. Local heat transfer parameters for t’orced convection 
(Gr/Re = 0). 
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FIG. 4. Local heat transfer parameters ior forced convection 
(Gr/Rr = I). 

l-4. Results for fqrced convection (Cr/Rr = 0) are 
also shown to indicate the fact that buoyancy force 
augments the heat transfer rates. The no-slip bound- 
ary effect, which is governed by the parameter Dn Pe, 

reduces the heat transfer as compared to the case 
of a Darcy flow. The decrease in the heat transfer 
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FIG. 7. The temperature distributions at x = 20 mm 
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FIG. 8. The temperature distributions at x = 350 mm. 

parameter is more significant near the leading edge, 
as shown in the figures, which imply that the boundary 
effect is more important near the leading edge. Like 

the boundary effect, the effect of flow inertia is to 
decrease the heat transfer rate. This is similar to what 
has been reported in ref. [2] for forced convection over 
a flat plate. The importance of the inertia effect is 
characterized by the parameter I defined in equation 
(1 I). This parameter is seen to be proportional to the 
particle diameter d, hence the heat transfer is more 
reduced for porous media with large particles. The 
numerical solutions also indicate the enhancement in 
heat transfer due to flow channeling. It should be 
noticed that the heat transfer will be overestimated 
without the inclusion of inertia effects in non-uniform 
porous media. When the boundary, inertia, and vari- 
able porosity effects are considered simultaneously, 
the heat transfer can be either enhanced or reduced, 

as compared to the Darcy case, depending on the 
balance between these mechanisms. 

Typical velocity distributions with various non- 
Darcian effects are plotted in Fig. 5 for a position 
near the leading edge and in Fig. 6 for a downstream 
position. It can be concluded that the boundary and 
inertia effects tend to decrease the velocity, while the 
variable porosity effect causes an overshoot of velocity 
near the wall. This channeling profile is created by the 
non-uniform porosity distribution with a high 
porosity region near the wall. At downstream 
locations the velocity overshooting is seen to be con- 
fined in a narrower region than that near the leading 
edge. Also from these figures it is noted that the Darcy 

flow model (nBnIU) allows a slip velocity on the solid 
boundary. The free-stream velocity for the case with 
inertia effect included is given by equation (14). Fig- 
ures 7 and 8 present the dimensionless temperature 
profiles corresponding to the velocity profiles pre- 
sented in Figs. 5 and 6. As seen in the figures, both 
boundary and inertia effects lead to a thicker thermal 
boundary layer but a smaller temperature gradient at 
the wall. 

- - BIV 
----. B,” 

- nBnlU 

_ / - - 
/- 

---- 

C- __-- 
_____----. 

/ 

- _/H 
__-- 

__-- 
d-3mm 
A Il.059 

/‘&ith dispersion effect GtiRe - 1 
PQ - 192.6 

_______-_--_-_-_-_---~-----. 
Without disoersion effect 

I I I I I 
100 200 300 400 500 

x [mm1 

FIG. 9. Influence of thermal dispersion on the local heat 
transfer parameters. 
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FIG. 10. Influence of thermal dispersion on the local heat 
transfer parameters. 

The effect of thermal dispersion on the heat transfer 
parameter can be observed in Figs. 9 and IO. This 
effect is expected to become important in the case 
where inertia effects are prevalent. The empirical con- 
stant D, defined in equation (I 7) should be determined 
from experiment. In the present study a fixed value of 
0.02 [I31 is used to examine qualitatively the dis- 
persion effect. The results show that heat transfer 
is increased greatly by taking into consideration the 
thermal dispersion effect. This large enhancement in 
heat transfer caused by the dispersive transport can 
be attributed to the better mixing of convective fluid 
within the pores. As verified from the figures, thermal 
dispersion has a more pronounced effect at a higher 
value of Pe,. 

CONCLUSION 

The analysis is performed to investigate the sig- 
nificance of non-Darcian flow effects on mixed con- 
vection from a heated vertical cylinder embedded in 
fluid-saturated porous media. It is seen that the vel- 
ocity and temperature profiles, predicted by including 
the non-Darcian effects, differ significantly from those 
based on Darcy’s law. When both the boundary 



and inertial effects are incorporated in the analysis. 
the velocity in the boundary layer is reduced, resulting 
in a lower heat transfer rate. The flow channeling 
effect, which is due to the variation in porosity near 
the wall, enhances the momentum transport in the 
boundary layer and results in an increase in heat trans- 

fer. Whether heat transfer is enhanced or reduced 
depends on the relative magnitude of these effects. 
Also, the results demonstrate that dispersion dra- 

matically increases the thermal communication 
between the porous matrix and the solid boundary. 
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EFFETS NON DARCIEN SUR LA CONVECTION MIXTE AUTOUR D’UN CYLINDRE 
VERTICAL NOYE DANS UN MILIEU POREUX SATURE 

Resumt~~On considtrc le prohleme de la convection mixte autour d’un cylindre vertical dans un milieu 
poreux en tenant compte dcs effets non darciens. Ces elfets incluent la condition de non glissement a la 
frontiere. la force d’inertie, la porositt variable et la dispersion thermique transverse. La solution numerique 
des equations est obtenue pour montrcr l’influence importante des phenomtncs non darciens sur 
I’ecoulement du guide et Ic transfer1 thermiquc. Les resultats montrent que la dispersion thermique tend 

a augmenter le flux thermiquc transfer& tandis que les elrets de frontiere et d’inertie le diminuent. 

NICHT-DARCY’SCHE EINFLUSSE AUF DIE MISCHKONVEKTION UM EINEN 
VERTIKALEN ZYLINDER IN EINEM GESATTIGTEN PORiiSEN MEDIUM 

Zusammenfassung-Das Problem der Mischkonvektion entlang eines senkrechten Zylinders in einem 
fluidgesattigten porosen Medium wird unter Beriicksichtigung nicht-Darcy’scher Effekte analysiert. Diese 
Einfliisse enthalten die Haftbedingung an der Wand, die Tdgheit der Striimung, variable Porositat und 
quergerichtete thermische Dispersion. Die zugrundeliegenden Gleichungen werden numerisch geldst. urn 
den wichtigen EinfluB dieser nicht-Darcy’schen Phlnomene auf Striimung und Warmelbergang zu demon- 
strieren. Die Ergebnisse zeigen, daR thermische Dispersion gewiihnlich den Wirmetibergang intensiviert, 

wahrend dieser durch Rand- und Trtigheitseffekte verringert wird. 

BJIMIIHME HEAAPCOBblX 3U@EKTOB HA CMEIIIAHHYIO KOHBEKHHTO Y 
BEPTWKAJlbHOFO HMJIMHAPA, HOMEI.lIEHHOI-0 B HACbIQEHHYIO I-IOPWCTYIO 

CPEAY 

AnHoTa~n-C YYeTOM HeAapCOBbIX 3@,CKTOB aHaJW3HpyeTCJ-, 3ilAaYa CMel"aHHOKOHBCKTBBHOr0 06Te- 

KaHHll BCpTHKZLilbHOl-0 UAJlAHApa,llOMCUlaeMOTO B HaCbILUeHHbIe TAAKOCTLK) nOpHCTbIe CpeAbl. yKa3aH- 

HbIe 3+$eKTbI BKJUO'IBIOT rpaHA',HOe yCJIOBW2 OTCyTCTBFW CKOJIb~eHHI, UHCpUHOHHyH) CW,y TeYeHUII, 

~3MeHmoluymcn nopmTocTb u nonepewoe pacceaHRe Tenna. IlonyqeHo wcneHHoe peIlreHHe onpe- 

AWIRIOUII(X ypaBHeHH& KOTOpOe AeMOHCTpHpyeT CyuleCTBeHHOe BJIW,HIIe HeAapCOBbIX IlB,EHAii Ha 

Teqeme XB~KOCTA u TennonepeHoc. PesynbTaTbr noKa3brBamT, STO pacceaHae Tenna npmona~ K 

IIHTeHCA,$AKaUUU TelTJIOnepeHOCa, B TO BpeM,l KaK TpaHAWble B ElHepu&,OHHbIe 3+N$eKTbI er0 yMeHb- 

UIaIoT. 


